

Enough electricity to power more than **26,000** homes annually

Over \$2.5 million projected annual investment through local taxes, landowner payments, and community benefit funds

Approximately **90 jobs** supported throughout construction

Up to 99 megawatts of renewable energy

Up to 15 wind turbines using the most up-to-date, innovative technology

3-5 full time operations & maintenance staff

Project Schedule

Project Component	Date
EIS Completed	June 2023*
Geotechnical Engineering Information for Wind Turbine Site	September 2023
Clearing and Grubbing of the Project Area	Mid 2024 - Late 2024
Turbine Laneway Construction	Late 2024
Project Substation Installation	Mid 2024 – Late 2025
Winter Shut Down	Late 2024 – Early 2025
Collector System Installation	Mid 2025
Wind Turbine Site Foundation Construction	Mid 2025
Wind Turbine Erection	Mid 2025
Commissioning of Wind Turbines and Substation	Late 2025

Invenergy | Wind Construction

Step 1: Excavation Work Begins

Step 2:Foundation is Started

Step 3: Concrete is Poured

Step 4:
Tower is
Delivered
in Sections

Step 5:
Base is
Attached
to Tower
Foundation

Step 6: Erecting the Tower is Completed

Step 7:
Nacelle
& Turbine
Blades are
Attached

Step 8:
Underground
Cables are
Trenched In

Step 9: Turbine Laneways are Completed

Step 10:
Wind Farm is
Operational

Wind Turbine Design

The Project will consist of 15 Vestas or Siemens wind turbines, each capable of producing 6.2 or 6.6 MW respectively, for a total nameplate production of 93 to 99 MW. It will also include turbine laneways to each turbine, electrical collector lines to connect the turbines, and a Project substation.

Vestas 6.2 MW

Siemens 6.6 MW

How Wind Works

Wind turbines are designed to capture the natural power of the wind in our atmosphere and convert it into electricity. The electricity generated from a single wind turbine can power hundreds of homes.

Environmental Impact Assessment Process on Prince Edward Island

Contact Information

Richard Deacon

Project and Land Manager Skinners Pond Wind Energy Centre

Maryse Tremblay

Manager, Communities, Stakeholders and First Nations

Invenergy

67 Mowat Ave, Suite 335 Toronto, ON M6K 3E3

TELEPHONE
(905) 479-2600
EMAIL
rdeacon@invenergy.com

TELEPHONE
(418) 391-7525

EMAIL
mtremblay@invenergy.com

EMAIL media@invenergy.com

